Example Test Sets

The following table is a summary of the example datasets provided in the TESTSET subdirectory.

Name	Column s	Row	Description
LOGIC	5	4	Contains a truth table for 2 input logical AND, OR and XOR operations.
<u>ENCODE</u>	11	8	Contains a truth table for an 8 input to 3 output binary encoder. If the inputs and outputs are reversed then the table becomes a 3 to 8 decoder.
<u>AIR</u>	13	108	Contains a table of number of airplane tickets sold by month for 9 years. The table is arranged 13 months wide with the first 12 months being the previous 12 months and the NEXT column being the next months number of seats. The final 12 rows are reserved for
<u>VEL</u>	7	609	Contains the distance traveled by a projectile using different angles and initial velocity. Additional columns of angle and velocity are included with random noise added.
<u>COATING</u>	8	128	Contains the results of a coating experiment. Different levels of starch, latex, coating weight, bonding agent and calender pressure are visited and the effects on opacity, brightness and gloss are recorded
<u>SODIUM</u>	6	220	Contains the results of a designed experiment. Different gases and mixtures were tested to see what combination of gas, time and temperature could be used to convert Na2SO4 to Na2S the most yield in the shortest time.
<u>REDWOOD</u>	15	72	Contains the results of a designed experiment. Different species of wood chips were tested to see if less expensive mixes could be used to make paper board while still guaranteeing a minimum strength and vield.
<u>RING</u>	15	507	Contains a process log of 14 sensors from a paper machine along with one laboratory measurement. The purpose of the log is to see if any process variables could be used to predict the lab variable
<u>SPECIES</u>	5	2000	Contains a process log of 4 sensors along with 1 field that calculates the wood species exiting a wood digestor
<u>NOX</u>	23	1340	Contains a process log of 23 sensors from a power boiler. The purpose of the log was to see if the process variables could be used to predict stack gases emitting from the boilers smoke stack
<u>CLO2</u>	6	30	Contains the results of a designed experiment. Different levels of chemicals were tested to find the ideal setpoints needed to produce CIO2 most efficiently.
<u>CLOSTAT1</u>	9	15	Contains the results of a designed experiment. Different stream setpoints were simulated to find the most economical setpoints.

<u>PEAK4</u>	3	121	Contains the results of stepping angles X and Y (11 steps) from 0 to and evaluating $Z = sin(X) sin(Y)$
<u>CURL</u>	9	70	Contains the results of a designed experiment. Paper machine variables were varied to discover any major effects on paper curl.
<u>STR4</u>	24	1178	Contains a process log of a paper machine. The purpose of the log was to see if the process variables could be used to best predict strength properties.

To import any of the aforementioned datasets into the NNMODEL issue the **Import Data From ASCII File** command from the File menu. The files are found in the \nnmodel\testsets sub-directory. Once a raw file has been imported the data matrix can be saved in binary format and reloaded at any time using the Save or Open commands in the File menu.

Example: LOGIC Dataset

	<u>L</u> (<u>OGIC Detai</u> File Name	iled Descri - LOGIC.R	<u>ption</u> AW								
Description:	This dataset contains a truth table of three logical operations (i.e. AND, OR and XOR). The experiment is designed to show the results of the three separate logical operations given the same inputs. The data entered into the table has been translated from the logical language into a numerical representation (i.e. $0 = FALSE$ and $1 = TRUE$).											
Column	Column De	scription										
IN1 IN2 AND OR XOR	First input in Second inpu Logical AND Logical OR r Logical XOR	to the logic t into the lo results esults results	al operatior gical opera	1 tion								
Data Analysis	Analysis is n	ot needed o	due to the s	mall size of	the datase	t.						
Model Building	<pre>It is suggested to develop 4 models with this dataset. Build a separate model for each of the logical operations and an all inclusive model. The 4 models built are: AND : IN(IN1, IN2) => OUT(AND) OR : IN(IN1, IN2) => OUT(OR) XOR : IN(IN1, IN2) => OUT(OR) LOGIC : IN(IN1, IN2) => OUT(AND, OR, XOR)</pre>											
	The previous and generat After creatin commands f	s notation re es AND, OR g each moc rom the Mo	eads: Model and XOR as lel select In del menu.	LOGIC has s outputs. itialize and	IN1 and IN2	2 as inputs i ning						
Model Analysis	All four mod default setti following mo	All four models were created and trained using the initial factory default settings for the training parameters. After training the following model statistics were reported.										
	Analysis of r Variable	nodel AND Mean	Std Dev	Minimum	Maximu m	Sum Sq						
	IN1	0.50000 0	0.57735 0	0.00000 0	1.00000 0	1.00000 0						
	INZ	0.50000 0	0.57735 0	0.00000 0	1.00000 0	1.00000 0						
	Measured	0.25000 0	0.50000 0	0.00000 0 -	1.00000 0	0.75000 0						
	Predicted Residual	0.23293 0	0.49859 5	0.12671 2 -	0.97078 7	0.74579 1						

R Square	0.01707 0	0.08180 8	0.05952 0 0.973230	0.12671 2	0.02007 8
Analysis of n Variable	Mean	Std Dev	Minimum	Maximu m	Sum Sq
IN1	0.50000 0	0.57735 0	0.00000 0	1.00000 0	1.00000 0
IN2	0.50000 0	0.57735 0	0.00000 0	1.00000 0	1.00000 0
Measured	0.75000 0	0.50000 0	0.00000 0	1.00000 0	0.75000 0
Predicted	0.75437 2	0.49165 4	0.01941 8	1.05648 9	0.72517 0
Residual R Square	- 0.00437 2	0.04188 4	- 0.05648 9 0.992983	0.03490 0	0.00526 3
Roquare			0.552505		
Analysis of n Variable	nodel XOR Mean	Std Dev	Minimum	Maximu m	Sum Sq
IN1	0 50000	0 57705		1 00000	1 00000
IN2	0.50000 0	0.57735 0	0.00000 0	1.00000 0	1.00000 0
	0.50000 0	0.57735 0	0.00000 0	1.00000 0	1.00000 0
Measured	0.50000 0	0.57735 0	0.00000 0	1.00000 0	1.00000 0
Predicted	0.50070 8	0.57455 4	- 0.00112 6	0.99909 0	0.99033 7
Residual	- 0.00070 8	0.00452	- 0.00740 5	0.00253	0.00006
R Square	0	2	0.999939	5	-
Analysis of n	nodel I OGIC				
Variable	Mean	Std Dev	Minimum	Maximu m	Sum Sq
IN1	0.50000 0	0.57735 0	0.00000 0	1.00000 0	1.00000 0
IN2	0.50000	0.57735	0.00000	1.00000	1.00000
	U	U	U	U	U

Measured	0.25000	0.50000	0.00000	1.00000	0.75000
	0	0	0	0	0
Predicted	0.21522 9	0.51705 0	- 0.19736 4	0.96998 9	0.80202 3
Residual R Square OR	0.03477 1	0.11903 0	- 0.08651 0 0.943328	0.19736 4	0.04250 4
Measured	0.75000	0.50000	0.00000	1.00000	0.75000
	0	0	0	0	0
Predicted	0.83017	0.53260	0.07566	1.32254	0.85100
	9	6	5	7	8
R Square XOR	0.08017 9	0.17509 9	0.32254 7 0.877361	0.08839 3	0.09197 9
Measured	0.50000	0.57735	0.00000	1.00000	1.00000
	0	0	0	0	0
Predicted	0.50292	0.33972	0.24758	1.00162	0.34624
	1	7	0	8	4
R Square	0.00292 1	0.47116 5	0.41813 3 0.334011	0.65565 9	0.66598 9

After reviewing the above model statistics it was noted that the first three separate models predicted the output very well. However, the results of the LOGIC model showed a significant loss of accuracy (as measured by R Square) when combining the three logic functions. The all inclusive model cannot predict as well as the separate models because the default training parameters did not allow the model to build up enough internal complexity. The following table demonstrates that selecting any type of training that will raise the internal complexity will also result in better models. The highlighted model was the initial factory default parameters model shown above.

Training Type	Coun t	Options	AND	OR	XOR
AI	1000		0.94332 8	0.87736 1	0.33401 1
Standard 4 Hid	1000		0.89476 8	0.99953 0	0.99999 6
AI	1000	Connect I/O	0.99174 3	0.99646 3	0.99354 5
AI	5000	-	1.00000 0	1.00000 0	1.00000 0

Standard 4	1000	CG Train	0.99999	0.99999	0.99999
Hid			6	9	7
Equal Spaced	1000		0.99999	0.99999	1.00000
			7	9	0

Example: ENCODE Dataset

ENCODE Detailed Description File Name - ENCODE.RAW

Description: This dataset contains a truth table of three logical operations (i.e. AND, OR and XOR). The experiment is designed to show the results of the three separate logical operations given the same inputs. The data entered into the table has been translated from the logical language into a numerical representation (i.e. 0 = FALSE and 1 = TRUE).

Column Names	Column Description
IN1	Input 1 to encoder or output from decoder
IN2	Input 2 to encoder or output from decoder
IN3	Input 3 to encoder or output from decoder
IN4	Input 4 to encoder or output from decoder
IN5	Input 5 to encoder or output from decoder
IN6	Input 6 to encoder or output from decoder
IN7	Input 7 to encoder or output from decoder
IN8	Input 8 to encoder or output from decoder
OUT1	Output 1 from encoder or input to decoder
OUT2	Output 2 from encoder or input to decoder
OUT3	Output 3 from encoder or input to decoder

Data The following truth table was used as the dataset.

Analysis

Encoder/Decoder Truth Table

			_		.,					
IN1	IN2	IN3	IN4	IN5	IN6	IN7	IN8	OUT1	OUT2	OUT3
0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0
0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0
0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0
0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0
1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0

Model Building It is suggested to develop 2 models from this dataset. Build a encoder model (ENCODE) using IN1 through IN8 as inputs and OUT1 - OUT3 as outputs and build a decoder model (DECODE) using OUT1-OUT3 as inputs and IN1-IN8 as outputs. The 2 models built are:

ENCODE	:	IN(IN1,,IN8)	=>	OUT (OUT1,, OUT3)
DECODE	:	IN(OUT1,,OUT3)	=>	OUT(IN1,,IN8)

ModelBoth models were created and trained using the initial factory
default settings plus Standard BEP for the training parameters.
After training the following model statistics were reported:

Model ENCODE Predicted R Square

Outputs	
OUT1	1.000000
OUT2	1.000000
OUT3	1.000000
Mode	I DECODE
Predicted	R Square
Outputs	
IN1	0.903213
IN2	0.903793
IN3	0.903345
IN4	0.903565
IN5	0.903188
IN6	0.903522
IN7	0.904014
IN8	0.905515

With digital type functions it is hard to get a picture of how well these models are doing. The best way with these particular models is to interactively test them. This can be done using the **Interrogate Model** command in the Model menu.

Example: AIR Dataset

AIR Detailed Description File Name - AIR.RAW

Description: This dataset was constructed to demonstrate how a neural model can be used to predict a time series. It contains 12 columns of the number of tickets sold during the previous twelve months followed by the number of tickets sold during the next month. The dataset was generated from the following table titled **Airline Ticket Sales 1980-1989** by re-arraigning the first 9 rows for use as a training matrix and the last row as a test matrix.

Airline Ticket Sales 1980-1989

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1980	145	153	171	167	157	179	190	192	178	153	133	151
1981	155	163	183	172	162	194	221	220	204	172	144	182
1982	188	197	231	212	224	231	256	263	242	211	190	218
1983	224	234	253	235	237	286	300	313	275	249	223	253
1984	254	257	309	306	295	315	345	356	308	271	235	261
1985	267	243	303	295	304	344	394	375	338	295	261	299
1986	319	304	342	350	355	410	473	452	402	360	309	365
1987	367	362	413	408	416	487	537	527	460	397	347	399
1988	411	393	464	455	461	546	604	608	523	452	399	438
1989	439	413	468	449	473	565	641	656	527	469	401	439

The following table demonstrates how the previous table was rearranged to be used as a training matrix.

Re-arraigned ficket Sales												
M1	M2	m3	M4	M5	M6	M7	M8	M9	M10	M11	M12	NEXT
145	153	171	167	157	179	190	192	178	153	133	151	155
153	171	167	157	179	190	192	178	153	133	151	155	163
171	167	157	179	190	192	178	153	133	151	155	163	183
167	157	179	190	192	178	153	133	151	155	163	183	172
and so on												

Column	Column Description
Names	
M1	The number of tickets sold twelve months ago
M2	The number of tickets sold eleven months ago
M3	The number of tickets sold ten months ago
M4	The number of tickets sold nine months ago
M5	The number of tickets sold eight months ago
M6	The number of tickets sold seven months ago
M7	The number of tickets sold six months ago
M8	The number of tickets sold five months ago
M9	The number of tickets sold four months ago
M10	The number of tickets sold three months ago
M11	The number of tickets sold two months ago
M12	The number of tickets sold last month
NEXT	The number of tickets that will be sold this month
Data Analysis	A By Row Matrix graph was printed to see the monthly trend and verify that there were no gross errors in the dataset.

Model One model was constructed from this dataset:

ModelThe model was created and trained using the initial factory defaultAnalysissettings for the training parameters. After training the following
model statistics were reported.

Variable	Mean	Std Dev	Minimum	Maximu m	Sum Sq
M1	277.885 41	93.69096 o	133.000 00	537.000	833909. 78
M2	280.656	93.65298	133.000	537.000	833233.
М3	283.156 24	93.41242 5	133.000	537.000	828958. 70
M4	286.208 33	94.48975 9	133.000 00	537.000 00	848189. 88
M5	289.208 33	95.23411 0	133.000 00	537.000 00	861605. 89
M6	292.374 99	95.84398 3	133.000 00	537.000 00	872676. 56
M7	296.197 91	98.55510 3	133.000 00	546.000 00	922745. 29
M8	300.510 41	102.8245 3	133.000 00	604.000 00	1004423
M9	304.843 75	106.8888 5	133.000 00	608.000 00	1085396 5
M10	308.437 50	108.3687 4	133.000 00	608.000 00	.5 1115659 5
M11	311.552 08	108.1508 5	133.000 00	608.000 00	.9 1111177 .6
M12	314.322 92	106.9287 5	144.000 00	608.000 00	1086207
NEXT	317 312	106 3247	144 000	608 000	1073070
Measured	517.512 50 319.780	100.3247 5 105.5086	00 171.214	008.000 00 591.722	.6 1057546
Predicted Residual	79 - 2.46828 5	1 16.03191 5	96 - 51.8956 9	90 34.4275 51	.5 24417.1 17
R Square			0.977265		

To see how the model predicts the next twelve months select **Use Test Matrix** from the Model menu and re-run the model statistics.

Variable	Mean	Std Dev	Minimum	Maximu m	Sum Sq
NEXT					
	495.000	84.7445	401.000	656.000	78997.9
Measured	01	27	00	00	84
	524.930	65.0817	446.558	628.020	46592.0
Predicted	71	95	16	99	40
Residual	-	26.5575	-	27.9790	7758.36
	29.9307	98	59.2269	04	62

Building

	0
R Square	

2 0.901790

As you can see, the worst case under prediction was around 59 and the worst case over prediction was 28 seats. The following plot graphically demonstrates the result.

The command used was the **Measured and Predicted** command from the Graph menu.

Example: VEL Dataset

	VEL Detailed Description
	File Name - VEL.RAW
Description:	This dataset was constructed to demonstrate how well a neural model can predict a trajectory. It contains the distance measurement, the angle of launch and the initial velocity. Along with the aforementioned columns the dataset also includes the aforementioned columns with noise added, plus a column of just noise so that you can experiment building neural models with noisy signals and compare them with ideal models.
Column Names	Column Description
ANGLE	Angle measured from horizontal Initial velocity
RANGLE	Angle with Gaussian noise added
RVEL	Initial velocity with Gaussian noise added
DIST	Distance traveled by projectile
RDIST	Distance traveled by projectile with Gaussian noise added
Data Analysis	A statistics report was generated using the Basic Statistics command in the Data menu. This gives us an overall picture of the dataset. If correlations are of interest they can be viewed using the Correlation Analysis command also in the Data menu.

By viewing the data matrix it can be observed that the initial velocity was varied from 0 to 100 by 5 and the launch angle was varied from 3 to 87 by 3.

Variable	Ν	Mean	Std Dev	Minimum	Maximum
ANGLE	609	45.000000	25.120434	3.000000	87.000000
VEL	609	50.000000	30.301392	0.000000	100.00000
RANGLE	609	45.141823	25.438328	-5.960000	92.910004
RVEL	609	49.991724	30.296755	0.000000	102.98999
NOISE	609	-0.023645	3.387809	-10.18000	11.090000
DIST	609	61.804992	65.890137	0.000000	258.10000
RDIST	609	61.801954	65.948653	-0.040000	262.64001

Model Building	Two separate models were constructed from this dataset. The first model uses simply the initial velocity and the launch angle:
	VEL1 : IN(VEL, ANGLE) => OUT(DIST)
	After the previous model was analyzed, and determined to be not
	good enough, a second model was constructed that used
	trigonometric functions as inputs rather than the simple angle:
	VEL2 : IN(VEL, SANG, CANG) => OUT(DIST)
Model	The model was created and trained using the initial factory default
Analysis	settings for the training parameters plus CG. CG training was added
-	because a trajectory is known to be trigonometric in nature and
	harder training is necessary. After training the following model
	statistics were reported.

Variable	Mean	Std Dev	Minimum	Maximu	Sum Sq
ANGLE	45.0000 00	25.1204 34	3.00000	m 87.0000 00	383670. 01
VEL	49.9999 99	30.3013 91	0.00000 0	100.000 00	558249. 97
DIST					
Measured	61.8049 92	65.8901 37	0.00000	258.099 97	2639638 .2
Predicted	58.9205 17	66.3733 02	- 52.7954 3	236.051 07	2678492 .4
Residual	2.88447 5	15.5243 49	- 73.2593 3	52.7954 37	146531. 29
R Square	-		0.944488		

Although the R Square statistic is respectable, a closer examination using the **Measured and Predicted** or **Measured vs. Predicted** graphs reveal significant problems predicting the distance when the angle is near 0 or 90 degrees. The following graph demonstrates the problem.

Therefore, a second model was created using calculated columns to provide more information. Two additional columns were created to include the sine and cosine of the launch angle into the model. To do this, first add the following two equations to the equation string of the data matrix:

SANG = SIN (ANGLE * 2 * PI / 360)

CANG = COS (ANGLE * 2* PI / 360)

Then create the columns using the **Append Calculated Columns** command in the Edit menu. After training the following model statistics were reported.

Variable	Mean	Std Dev	Minimum	Maximu m	Sum Sq
VEL	49.9999 99	30.3013 91	0.00000 0	100.000 00	558249. 97
SANG					54.1326
	0.64118 0	0.29838 6	0.05233 6	0.99863 0	56

CANG					54.1326
	0.64118 0	0.29838 6	0.05233 6	0.99863 0	56
DIST					
	61.8049	65.8901		258.099	2639638
Measured	92	37	0.00000 0	97	.2
	61.6083	65.6657	-	240.978	2621687
Predicted	27	10	8.98362 0	04	.1
Residual			-	18.3556	10563.6
	0.19666	4.16827	10.3147	06	98
	5	4	1		
R Square			0.995998		

The R Square statistic is better then the previous model and the **Measured and Predicted** or **Measured vs. Predicted** graphs reveal a significant increase in the overall accuracy.

Example: COATING Dataset

COATING Detailed Description File Name - COATING.RAW

Description: The coating dataset contains the data from an incomplete designed experiment. This experiment was designed to determine the ideal levels of the five independent variables (STARCH, LATEX, HP91, COATWT and CPSI) necessary to maintain minimum levels of the dependent variables (BRIGHTNESS, OPAC and GLOSS). In this dataset STARCH, LATEX, HP91 and COATWT are varied to five different levels while CPSI is varied to two levels. The independent variables STARCH, LATEX, HP91 and CPSI can set to the desired target and maintained, however, COATWT cannot controlled as accurately. Therefore, the targeted COATWT value is later replaced with the measured value.

Column	Column	Description
--------	--------	-------------

Names

Со	lumn	Desc	riptior	1

STARCH	The percentage of starch added to the coating.
LATEX	The percentage of latex added to the coating. Latex is a rubber
	used as a binding agent in coatings.

- HP91 The percentage of HP91 added to the coating. HP91 is a plastic pigment.
- COATWT The measured amount of coating applied to the paper.
- CPSI The pressure applied by a super-calander to polish the surface of the coated paper.
- BRIGHT The measured brightness of the finished paper/coating. Brightness is the measurement of how white the surface of the piece of paper is.
- OPAC The measured opacity of the finished paper/coating. Opacity is a measurement of how opague (impenetrable to light) a piece of paper is.
- GLOSS The measured gloss of the finished paper/coating. Gloss is a measurement of how polished the surface of a piece of paper looks.
- Data A statistics report was generated using the **Basic Statistics** Analysis command in the Data menu. This gives us an overall picture of the dataset. If correlations are of interest they can be viewed using the Correlation Analysis command also in the Data menu.

Variable	Ν	Mean	Std Dev	Minimum	Maximum
STARCH	128	17.928281	5.206710	6.500000	26.000000
LATEX	128	12.720312	3.034249	6.500000	19.500000
HP91	128	5.735938	2.644463	0.000000	11.000000
COATWT	128	4.677344	0.904097	2.960000	6.380000
CPSI	128	45.500000	19.576621	26.000000	65.000000
BRIGHT	128	65.760938	1.091934	62.900002	68.400002
OPAC	128	70.977344	1.388775	67.699997	74.400002
GLOSS	128	39.965625	7.816129	25.600000	57.500000
Model	Fc	our models wer	e constructed	from this da	taset. The first

Building

Four models were constructed from this dataset. The first model included all dependent variables into one model: : IN(STARCH, LATEX, HP91, COATWT, CPSI) COATING

=> OUT(BRIGHT, OPAC, GLOSS)

The next three models were constructed to predict the dependent variables separately:

:	IN(STARCH,	LATEX,	HP91,	COATWT,	CPSI)
	=> OUT (BRI	GHT)			
:	IN(STARCH,	LATEX,	HP91,	COATWT,	CPSI)
	=> OUT (OPA	C)			
:	IN(STARCH,	LATEX,	HP91,	COATWT,	CPSI)
	=> OUT (GLO	SS)			
	::	: IN (STARCH, => OUT (BRIC : IN (STARCH, => OUT (OPA) : IN (STARCH, => OUT (GLO)	<pre>: IN(STARCH, LATEX, => OUT(BRIGHT) : IN(STARCH, LATEX, => OUT(OPAC) : IN(STARCH, LATEX, => OUT(GLOSS)</pre>	<pre>: IN(STARCH, LATEX, HP91, => OUT(BRIGHT) : IN(STARCH, LATEX, HP91, => OUT(OPAC) : IN(STARCH, LATEX, HP91, => OUT(GLOSS)</pre>	<pre>: IN(STARCH, LATEX, HP91, COATWT, => OUT(BRIGHT) : IN(STARCH, LATEX, HP91, COATWT, => OUT(OPAC) : IN(STARCH, LATEX, HP91, COATWT, => OUT(GLOSS)</pre>

Model Analysis The first model (COATING) was created and trained using the initial factory default settings for the training parameters plus **Standard BEP**. After training the following model statistics were reported.

Variable	Mean	Std Dev	Minimum	Maximu	Sum Sq
STARCH	17.9282 81	5.20671	6.50000	26.0000 00	3442.94 79
LATEX	12.7203 12	3.03424	6.50000 0	19.5000 00	1169.24 70
HP91	5.73593	2.64446	0.00000	11.0000 01	888.134 80
COATWT	4.67734	4 0.90409	2.96000	6.38000	103.808 70
CPSI	4 45.5000 00	7 19.5766 21	0 26.0000 00	0 65.0000 00	48672.0 00
Measured	65.7609 38	1.09193	62.9000 02	68.4000 02	151.424 73
Predicted	65.9070 51	4 1.09308	63.2971 92	68.3630 07	151.743 55
Residual	- 0.14611 3	5 0.36833 7	- 1.58667 8	0.66027 1	17.2303 82
R Square OPAC			0.886212		
Measured	70.9773 44	1.38877	67.6999 97	74.4000 02	244.944 35
Predicted	70.8909 38	1.28765	67.9260 71	74.0463 33	210.573 38
Residual	0.08640 6	0.49188 4	- 1.03631 6	2.01051 3	30.7275 83
GLOSS			υ.8/4553		
Measured	39.9656 25	7.81612	25.6000 00	57.5000 00	7758.66 86

		9			
	39.9837		25.6559	58.5900	6828.54
Predicted	50	7.33267	18	76	21
		0			
Residual	-		-		614.836
	0.01812	2.20028	6.19895	5.02102	27
	5	0	9	3	
R Square			0.920755		

The next three models (BRIGHT, OPAC and GLOSS) were trained using the same training parameters as the first model. This shows that modeling the dependent variables separately can produce higher R Square models under identical conditions.

BRIGHT					
Measured	65.7609 38	1.09193	62.9000 02	68.4000 02	151.424 73
Predicted	65.8772 90	- 1.11831 2	63.1876 56	68.5457 23	158.828 89
Residual	- 0.11635 2	0.32166 7	- 1.40486 1	0.71015 2	13.1406 74
R Square OPAC			0.913220		
Measured	70.9773 44	1.38877	67.6999 97	74.4000 02	244.944 35
Predicted	71.0150 69	1.30649	68.1092 15	74.4721 68	216.778 25
Residual	- 0.03772 5	0.45061 9	- 1.25515 0	1.76705 2	25.7882 66
R Square GLOSS			0.894718		
Measured	39.9656 25	7.81612	25.6000 00	57.5000 00	7758.66 86
Predicted	39.6645 02	7.13537	26.0434 40	55.8920 56	6466.02 95
Residual	0.30112	0 2.02177	- 4.90131	5.47611	519.123 10
R Square	5	/	o 0.933091	0	

The performance of the first model can be increased by tweaking the training parameters. In this case **Connect IO** and **CG Training** was added to the default settings. After training the following model statistics were reported.

.9000	6
	.9000

8.4000 151.424

Measured	38	1.09193 4	02	02	73
Predicted	65.7603 66	1.04878 9	63.2032 36	68.3336 11	139.694 75
Residual R Square	0.00057 2	0.30598 2	- 1.24059 3 0.921477	0.69928 0	11.8903 49
Measured	70.9773 44	1.38877	67.6999 97	74.4000 02	244.944 35
Predicted	70.9783 19	1.31424	67.8481 98	74.3544 77	219.358 00
Residual R Square	- 0.00097 5	0.43837 1	- 1.06492 6 0.900363	1.59545 1	24.4055 17
GLOSS Measured	39.9656 25	7.81612	25.6000 00	57.5000 00	7758.66 86
Predicted	39.9045 86	9 7.68330	24.7988 70	58.6896 86	7497.20 46
Residual	0.06103 9	1.89919 8	- 4.34608 5	4.68907 5	458.082 91
K Square			0.940959		

The final models were exported to a system optimizer to find the answer to: What is the lowest cost coating mixture that can still meet the minimum specifications of BRIGHT, OPAC and GLOSS? In the optimizer the cost of the coating was calculated by the following equation:

COST = C1COATWT (C2LATEX + C3STARCH + C4HP91)The solution to the problem would minimize COST while maximizing BRIGHT, OPAC and GLOSS and subject to the following constraints: BRIGHT > 71.5, OPAC > 78 and GLOSS > 48.

Optimization can not be performed in this version of the program.

Example: SODIUM Dataset

SODIUM Detailed Description

File Names - H2.RAW, CO.RAW, COH2.RAW, MIX.RAW, COH2MIX.RAW Description: This dataset is really made up of 5 separate datasets. It is the resu

ion: This dataset is really made up of 5 separate datasets. It is the result of a chemical experiment to determine the best way to reduce sodium sulfate to sodium sulfide using hydrogen, carbon monoxide or a mixture of both.

The plan was to run each experiment to 160 minutes twice, however, the mixture experiment could not be run longer then 70 minutes due to a problem with the experimental apparatus. The data before sixty minutes is not of any use (all the important stuff happens from 60 to 160 minutes). Due to this problem the MIX experiment yielded only one point per run.

- H2 The result of a designed experiment using only hydrogen gas as the agent and varying temperature and gas concentration.
- CO The result of a designed experiment using only carbon monoxide gas as the agent while varying temperature and gas concentration.
- COH2 The result of combining both the H2 and CO datasets into one using the **Concatenate Data Matrices** command in the Data menu. The combining of these two datasets is straight forward in that the two experimental designs are similar. It involves creating a new field in both matrices and setting the missing values to zero.
- MIX The result of a designed experiment using a mixture of both hydrogen and carbon monoxide gases as the agent while varying the gas concentrations and temperatures.
- COH2MIX The combined dataset of COH2 and MIX experiments. Combining these two datasets is mechanically easy in that both matrices have the same fields. However, statistically the dataset are very different. COH2 contains experimental runs where time varies from 60 to 160 and MIX only contains the 60 minute values. It is okay to paste these datasets together as long as the consequences are understood. The MIX data will serve as reference points the model must traverse. The MIX data is very important to the model because it contains the only points where both gases are present at the same time. Other reference points could also be entered in this manner (i.e. H2 = 0, CO = 0 and CONV = 0).

Column Column Description

Names	
TIME	Time elapsed since beginning of the run
H2	Percentage of hydrogen gas used
CO	Percentage of carbon monoxide gas used
TEMP	Temperature during the run
AVTEMP	Average temperature of run

CONV Percentage of Na2SO4 converted

DataH2 and CO contain a central composite design varying
concentration of the gas and the reaction temperature. Each run
was replicated twice. The design yielded a total of 10 runs. The MIX
experiment is a mixture design where the concentrations of H2 and
CO are varied and the temperature is held constant at the center
point. The following **Basic Statistics** reports were generated for all
the datasets.

Variable TIME	N 110	Mean	2 Std Dev 31 76750	Minimum	Maximum
	110	0	4	0	0
H2	110	50.00000 0	22.46301 8	25.00000	75.00000
TEMP	110	1203.887 7	18.05452 3	0 1179.959 9	1225.890 0
AVTEMP	110	, 1203.779 9	18.94908 5	1181.900 0	1226.199 9
CONV	110	0.837782	0.089136	0.629880	0.997350
		C	0		
TIME	110	110.0000 0	31.76750 4	60.00000 0	160.0000 0
CO	110	27.00000 0	20.24165 9	5.000000	50.00000 0
TEMP	110	1200.516 2	19.21041 3	1173.469 9	1223.449 9
AVTEMP	110	1199.769 9	20.42242 2	1174.699 9	1221.900 0
CONV	110	0.665540	0.210730	0.163860	0.979830
		CO	H2		
TIME	220	110.0000 0	31.69489 2	60.00000 0	160.0000 0
CO	220	13.50000 0	19.67254 8	0.000000	50.00000 0
H2	220	25.00000 0	29.64785 7	0.000000	75.00000 0
TEMP	220	1202.202	18.67540	1173,469	1225.890
		0	6	9	0
AVTEMP	220	0 1201.774 9	6 19.75697 2	9 1174.699 9	0 1226.199 9
AVTEMP CONV	220 220	0 1201.774 9 0.751661	6 19.75697 2 0.183050	9 1174.699 9 0.163860	0 1226.199 9 0.997350
AVTEMP CONV	220 220	0 1201.774 9 0.751661 M	6 19.75697 2 0.183050	9 1174.699 9 0.163860	0 1226.199 9 0.997350
AVTEMP CONV TIME	220 220 8	0 1201.774 9 0.751661 M 60.00000 0	6 19.75697 2 0.183050 IX 0.000000	9 1174.699 9 0.163860 60.00000 0	0 1226.199 9 0.997350 60.00000 0
AVTEMP CONV TIME CO	220 220 8 8	0 1201.774 9 0.751661 M 60.00000 0 28.12500 0	6 19.75697 2 0.183050 IX 0.000000 20.86307 4	9 1174.699 9 0.163860 60.00000 0 0.000000	0 1226.199 9 0.997350 60.00000 0 50.00000
AVTEMP CONV TIME CO H2	220 220 8 8 8	0 1201.774 9 0.751661 M 60.00000 0 28.12500 0 29.68750 0	6 19.75697 2 0.183050 IX 0.000000 20.86307 4 28.29807 9	9 1174.699 9 0.163860 60.00000 0 0.000000 0.000000	0 1226.199 9 0.997350 60.00000 0 50.00000 0 75.00000 0

CONV	8	0.50	9325	0 25	2241	0.0	00000	0	758300	
CONV	0	0.55	,5525	0.23	2271	0.0	00000	Ŭ	.750500	
			COH2M	IX.DN	1					
TIME	229	108. 3	0349	32.5 1	5331	60.0 0	00000	$16 \\ 0$	50.0000	
СО	229	13.9 5	5196	19.8 7	2914	0.0	00000	50 0	0.00000	
H2	229	25.4 6	9126	29.9 5	0122	0.0	00000	10 0	00.000	
TEMP	229	1202 4	2.222	18.3 8	1137	117 9	/3.469	12 0	225.890	
AVTEMP	229	1201 2	.812	19.3 3	7154	117 9	4.699	12 9	226.199	
CONV	229	0.74	6724	0.18	86770	0.0	00000	0	.997350	
Model Building		Many models the last mod the COH2MIX CONV	s were b el is rep K datase : IN	ouilt cortectet.	luring th I. The m E, CO, OUT (COP	he const NOST H2, NV)	ourse of complet TEMP)	the e r	e analysis, k nodel was k	out only ouilt from
Model Analysis		Model (CONV default settir and CG Opt i were reporte	/) was c ngs for t i mizati ed.	reate he tra on .A	d and t aining p fter trai	raino barai ning	ed using meters g the follo	th plu owi	e initial fact us Standar ing model s	tory d BEP tatistics
		CONV								
		Measured	0.7467 4	2	0.18677 0	7	0.00000 0		0.99735 0	7.95329 6
		Predicted	0.7468 7	4	0.18234 8	1	0.11648 9		0.99121 2	7.58121 4
		Residual	- 0.0001	.2 (0.03430)	- 0.14795		0.07887	0.26838

R Square

A **Measured vs. Predicted** graph was generated to view how the model performed. This graph demonstrates that the model seems to predict CONV fairly well. The blue lines represent the \pm 5% tolerance band.

0.966255

The following contour graph was generated to demonstrate the surface of the CONV variable in relation to the concentrations of H2 and CO, given TEMP=1200 degrees and TIME=110 minutes.

Example: REDWOOD Dataset

REDWOOD Detailed Description
File Name - REDWOOD.RAWDescription:The redwood experiment was done to see if redwood chips could be
used to replace the less available Douglas fir chips in making wood
pulp for container board. A designed experiment was done to set
the various percentages of DFIR, HFIR, PINE, REDW and cooking
temperatures. A COOK number was included in the dataset for
identification purposes only. After each batch cook the pulp
properties TYLD, BPH and KAPN were measured. These pulps were
refined to three different levels of (REVS) and the pulp property CSF
was measured. Finally paper was made from the pulp batches and

the following physical measurements were made on the paper TEAR, BURST, FOLD, SCOT and PORS.

Column Column Description

Names	
СООК	The batch number of the cook.
REVS	The number of revolutions the pulp was refined to.
DFIR	The percentage of Douglas fir chips used in the pulp.
HFIR	The percentage of Hemlock fir chips used in the pulp.
PINE	The percentage of Pine chips used in the pulp.
REDW	The percentage of Redwood chips used in the pulp.
TEMP	The temperature the chips were cooked at.
TYLD	The percentage of pulp made as a fraction of total chips (pulp test).
BPH	The pH of the cook (pulp test).
KAPN	The Kappa number (pulp test)
CSF	The freeness number. (pulp test).
BURST	The result of the burst test (paper test).
FOLD	The result of the fold test (paper test).
SCOT	The Scott Bond test (paper test).
PORS	The porosity measurement (paper test).

DataA statistics report was generated using the Basic StatisticsAnalysiscommand in the Data menu. This gives us an overall picture of the
dataset. If correlations are of interest they can be viewed using the
Correlation Analysis command also in the Data menu.

Variable	Ν	Mean	Std Dev	Minimum	Maximum
COOK	72	252.66666	7.253945	241.00000	266.00000
REVS	72	2520.0000	2072.0106	0.000000	5040.0000
DFIR	72	0.267500	0.134675	0.080000	0.430000
HFIR	72	0.245000	0.088795	0.130000	0.340000
PINE	72	0.280000	0.068669	0.170000	0.340000
REDW	72	0.062500	0.057132	0.000000	0.130000
TEMP	72	447.00000	8.056141	439.00000	455.00000
TYLD	72	0.681931	0.034129	0.603000	0.796000
TEAR	72	27.023889	4.171943	21.440001	36.639999
BPH	69	15.636232	0.596798	14.300000	16.500000
KAPN	72	79.548611	6.466925	69.099998	96.699997
CSF	72	621.61111	42.098997	536.00000	672.00000
BURST	72	5.463750	1.255601	3.230000	6.900000

FOLD	72	2464.0694	715.55764	984.00000	4070.0000
SCOT	72	0.169958	0.070813	0.039000	0.299000
PORS	72	4.729708	2.154128	1.442000	7.824000

Model4 models of unrefined pulp properties were constructed from this
dataset. The pulp properties modeled are TYLD, BPH and KAPN and
the only numbers to be included into the model(s) are when the
REVS is equal to zero (definition of unrefined). To exclude all other
rows of data except the REVS=0 add to the exclusions string the
following formula:

XIF (REVS != 0)

The first model included all independent variables (except REVS) of the pulp cook into one model predicting the pulp properties:

> PULP : IN(DFIR, HFIR, PINE, REDW, TEMP) => OUT(TYLD, BPH, KAPN)

The next three models were constructed to predict the dependent variables separately:

TYLD : IN(DFIR, HFIR, PINE, REDW, TEMP) => OUT(TYLD) BPH : IN(DFIR, HFIR, PINE, REDW, TEMP) => OUT(BPH) KAPN : IN(DFIR, HFIR, PINE, REDW, TEMP) => OUT(KAPN)

One model of refined pulp properties was created to predict CSF. This is the only pulp property (in this experiment) that varies with REVS so it is treated separately:

CSF : IN(DFIR, HFIR, PINE, REDW, TEMP, REVS) => OUT(CSF)

Finally a model is constructed to predict all paper properties: ALL : IN(DFIR, HFIR, PINE, REDW, TEMP, REVS) => OUT(TEAR, BURST, FOLD, SCOT, PORS)

ModelThe first model (PULP) was created and trained using the initialAnalysisfactory default settings for the training parameters plus StandardBEP, CG Training and Connect IO. After training the following
model statistics were reported.

Variable	Mean	Std Dev	Minimum	Maximu m	Sum Sq
DFIR	0.26217	0.13711	0.08000	0.43000	0.41359
HFIR	4 0.25000	2	0.13000	0.34000	0.17280
PINE	0 0.27739	6 0.07001	0 0.17000	0 0.34000	0 0.10784
REDW	1 0.06521	4 0.05767	0 0.00000	0 0.13000	3 0.07317
ТЕМР	7 446.652 17	2 8.17206	0 439.000 00	0 455.000 00	4 1469.21 73

TYLD					
Measured	0.68191 3	0.03729 4	0.61700 0	0.79600 0	0.03059 8
Predicted	0.68131 5	0.02904 1	0.63433 9	0.76563 0	0.01855 4
R Square	0.00059 8	0.02177 3	- 0.04140 5 0.659141	0.04994 0	0.01043 0
BPH	15 6247		14 2000	16 5000	
Measured	15.0347 83	0.60873 1	14.3000 00	00	8.15217 1
Predicted	15.6298 08	- 0.55488 2	14.6112 90	16.6051 03	- 6.77367 0
Residual	0.00497 5	0.26768 4	- 0.48674 0	0.73599 5	1.57640 4
R Square KAPN			0.806628		
Measured	79.9173 91	6.44258	69.1999 97	96.6999 97	913.152 91
Predicted	79.9984 69	9 6.07587	71.6120 45	92.9928 97	812.157 43
Residual	- 0.08107	4 2.00543	- 3.49020	3.70710	88.4788 90
R Square	9	J	, 0.903106	U	

After viewing the rather low R Square statistic it was decided to create separate models to increase the performance. The following three models were trained using the same parameters as the previous model.

TYLD

Measured	0.68262 5	0.03664 0	0.61700 0	0.79600 0	0.03087 8
Predicted	0.68276 5 -	0.03573 1	0.62539 0 -	0.79726 7	0.02936 4
Residual	0.00014 0	0.00872 2	0.01935 8	0.02158 3	0.00175 0
R Square BPH			0.943335		
	15.6347		14.3000	16.5000	
Measured	83	0.60873 1	00	00	8.15217 1

3

	15.6339		14.3714	16.4851	
Predicted	53	0.54875 7	28	11	6.62494 7
Residual			-		
	0.00083 0	0.23642 4	0.52256 0	0.49505 4	1.22972 0
R Square			0.849154		
KAPN .					
	79.5500		69.1999	96.6999	987.659
Measured	00	6.55299 4	97	97	88
	79.5358		69.7009	92.4378	937.256
Predicted	29	6.38359 5	35	51	56
Residual		-	-		46.4832
	0.01417 0	1.42162 3	2.36501 3	4.26214 6	97
R Square	-	-	0.952936	-	

A single model was constructed to predict CSF. The following model was trained using the same parameters as the first model.

CSF					
	621.611	42.0989	536.000	672.000	125835.
Measured	11	97	00	00	11
	621.700	41.5371	535.976	670.440	122498.
Predicted	89	26	07	61	63
Residual	-		-	21.1813	3454.35
	0.08977	6.97516	13.0333	96	34
	9	1	8		
R Square			0.972549		

A single model was constructed to predict all paper properties. The following model was trained using the same parameters as the first model.

TEAR					
Measured	27.0238 89	4.17194 3	21.4400 01	36.6399 99	1235.76 29
Predicted	27.0034 55	3.94627 1	21.9244 04	35.2656 40	1105.68 70
Residual R Square	0.02043 4	1.33341 5	- 2.84281 2 0.897846	3.70244 6	126.237 68
BURST					111 022
Measured	5.46375 0	1.25560 1	3.23000 0	6.90000 1	90
Predicted	5.46454 9	1.23918 9	3.26577 8	6.73997 6	109.026 91
Residual	-	-	-	-	

R Square	0.00079 9	0.19520 9	0.41406 5 0.975829	0.48516 0	2.70556 3
FOLD	2464 06	715 557	984 000	4070 00	3635361
Measured	94 2464.03	65 639.976	06 1189.07	00 3518.63	5. 2907950
Predicted Residual	29	92 323.195	34 -	54 998.629	3. 7416343
	0.03649 1	81	498.263 4	63	.1
R Square SCOT			0.795994		
Measured	0.16995 8	0.07081 3	0.03900 0	0.29900 0	0.35603 1
Predicted	0.17015 0	0.06693 4	0.05059 5	0.26006 5	0.31808 7
Residual	- 0.00019 2	0.02307 1	- 0.05977 3	0.05357 2	0.03779 2
R Square PORS			0.893851		
Measured	4.72970 8	2.15412 8	1.44200 0	7.82400 0	329.459 02
Predicted	4.72476	2.13945	1.53914	7.43190	324.986 66
Residual	0	,	-	2	4 1 7 4 7 0
	0.00494 0	0.24248 7	0.49511 5	0.50062 3	4.1/4/9 5
r syuale			0.90/320		

The final question. What mixture of wood chips, cooking temperature and REVS would allow us the meet the minimum paper properties while minimizing DFIR and maximizing TYLD?

subject to the following constraints: FOLD > 2500 SCOT > 0.14 REDW > 0.10 DFIR+HFIR+PINE+REDW < 1.0

Optimization can not be performed in this version of the program.

Example: RING Dataset

<u>RING Detailed Description</u> File Name - RING.RAW

Description: The RING dataset was captured during the normal operation of a paper machine. The intent of the data capture was to see if any of the standard logged process variables could be used to predict a

physical property (MDRING) of the manufactured paper board. This experiment is really a fishing expedition in that no designed experiment was performed on the process variables. However, there may be enough information in the log to point to variables that have a major effect.

Column Column Description

ľ	V	а	m	1	e	1	5	
-	-	_	_		-		-	

MDRING Ring crush measured in machine direction

- CONDWT Basis weight measurement
- AVEMO Average moisture of the paper board measurement
- SPEED Machine speed measurement
- FL1 Flow rate measurement
- CS1 Consistancy measurement
- FL2 Flow rate measurement
- FL3 Flow rate measurement
- FL4 Flow rate measurement
- HP1 Horse power measurement
- FL5 Flow rate measurement
- FL6 Flow rate measurement
- CS2 Consistancy measurement
- AN1 Freeness measurement
- CS3 Consistancy measurement

DataA statistics report was generated using the Basic StatisticsAnalysiscommand in the Data menu. This gives us an overall picture of the
dataset. With this much data it is highly recommended that the data
be viewed using the By Row Matrix command in the graph menu.

Variable	Ν	Mean	Std Dev	Minimum	Maximum
MDRING	507	120.27810	15.541973	75.000000	150.00000
CONDWT	507	40.058619	3.296797	32.849998	46.259998
AVEMO	507	6.249132	0.443878	4.250000	7.990000
SPEED	507	2132.8500	125.89145	1606.0000	2305.0000
FL1	507	21.466075	2.696087	13.000000	26.100000
CS1	507	3.231894	0.412474	2.500000	5.410000
FL2	507	67.242604	11.245570	35.799999	103.00000
FL3	507	8704.5956	575.66911	6849.0000	9805.0000
FL4	507	51733.443	3700.4051	10000.000	61023.000
HP1	507	1.094359	0.303432	0.500000	2.150000
FL5	507	0.064083	0.084342	0.000000	0.470000
FL6	507	42.958383	6.451481	27.700001	58.900002
CS2	507	3.379487	0.317734	3.050000	4.100000
AN1	507	684.21696	63.229086	500.00000	800.00000
CS3	507	5.599053	0.678285	2.850000	6.730000

Model Building A model was built that included all independent variables to predict the MDRING property:

MDRING : IN(CONDWT, AVEMO, SPEED,FL1, CS1, FL2, FL3, FL4, HP1, FL5, FL6, CS2, AN1, CS3) => OUT(MDRING)

ModelThe model was created and trained using the initial factory defaultAnalysissettings for the training parameters plus Standard BEP. After

training the following model statistics were reported.

Mean	Std Dev	Minimum	Maximu	Sum Sq
			m	•
120.278	15.5419	75.0000	150.000	122225.
10	73	00	00	78
126.972	13.3984	78.7609	152.964	90836.4
14	55	02	43	03
-		-	28.4812	43843.9
6.69404	9.30849	33.8861	62	36
2	6	2		
		0.641287		
	Mean 120.278 10 126.972 14 - 6.69404 2	Mean Std Dev 120.278 15.5419 10 73 126.972 13.3984 14 55 - 6.69404 2 9.30849 6	Mean Std Dev Minimum 120.278 15.5419 75.0000 10 73 00 126.972 13.3984 78.7609 14 55 02 - - - 6.69404 9.30849 33.8861 2 0.641287	Mean Std Dev Minimum Maximu 120.278 15.5419 75.0000 150.000 10 73 00 00 126.972 13.3984 78.7609 152.964 14 55 02 43 - - 28.4812 6.69404 9.30849 33.8861 62 2 6 2 0.641287

A **Measured and Predicted** graph was generated to view how the model performed as a time series. This graph demonstrates that the model seems to capture much of the variability, but there are major gaps.

A **Measured vs. Predicted** graph was also generated to demonstrate the lack of fit.

A sensitivity analysis was run to see which variables account for most of the variability of MDRING. The results are presented below.

Sensitivity Analysis of MDRING						
Variable	Initial	Percent				
Name	Setting	Total				
FL1	19.6	+0.1354				
		3				
FL4	47204.5	+0.1255				
		5				
HP1	1.33	+0.1221				
		8				
CS2	3.58	-0.11213				

SPEED	1955.5	-0.09160
AVEMO	6.12	-0.08170
FL5	0.24	-0.07192
CS1	3.96	-0.05456
AN1	650.0	+0.0536
		1
CONDWT	39.56	+0.0489
		4
CS3	4.79	-0.03340
FL6	43.3	+0.0311
		6
FL2	69.4	-0.02752
FL3	8327.0	+0.0103
		0

Example: SPECIES Dataset

SPECIES Detailed Description File Name - SPECIES.RAW

Description:

The species dataset was downloaded from a process control system in a paper mill. It was the result of an experiment to see if an algorithm could be developed that could predict when the wood species changed in the output of a continuous wood digestor. A continuous digestor converts wood chips into paper pulp. It is like a long pipe that you dump chips in a the top and pulp falls out at the bottom. The digestor is a hydraulic system that operates under high pressure and temperature. The inside of a digestor is a very corrosive and hence cant be well instrumented. The wood chips usually spend 3-5 hours making the trip from the top to the bottom.

Paper is made of a mixture of two species of wood (hardwood and softwood). Because the two species cook (digest) so differently they must be processed and stored separately. The ideal process would have two digestors (one for softwood and one for hardwood), however due to the expense, many mills have only one. In these mills the digestor is swung between the two species. Temperatures, chemicals, flows and cooking time vary between the two species. Pulp manufactured during this swing is called twilight pulp because it is nether hardwood or softwood. The twilight pulp must be treated as if it was hardwood thus reducing the profitability of the process. If s detector could be developed that could more exactly determine when the crossover was between the species the process would be more efficient.

The species dataset represents a 33 hour period. Each row is a one minute scan. Signal A3 was captured by an automatic sampling device that bottled the pulp. The A3 sample was then measured in a laboratory at a later time. The two questions to be answered by this experiment are 1) can the species change be detected and 2) what signals are the most important?

Column Names	Col	umn Descri	ption					
A1	Blo	Blow line gamma process measurement						
A2	Ref	ractivity inde	x process me	asurement	-+)			
A3	Sor	twood preser	it calculation	(laboratory te	St)			
A4	Irip	le D calculat	ion (from proc	cess measurer	nents)			
A5	Cor	Consistency process measurement						
Data Analysis	A si con dat be	A statistics report was generated using the Basic Statistics command in the Data menu. This gives us an overall picture of the dataset. With this much data it is highly recommended that the data be viewed using the By Row Matrix command in the graph menu.						
Variable	N	Mean	Std Dev	Minimum	Maximum			

Variable	N	Mean	Std Dev	Minimum	Maximum
A1	2000	0.345829	0.125509	0.176045	0.715970
A2	2000	0.493294	0.166214	0.176530	0.715647
A3	2000	0.543000	0.498272	0.000000	1.000000

A4	2000	0.300089	0.150496	-0.074310	0.882878
A5	2000	0.366992	0.191050	0.136625	0.742250

ModelThree models were constructed to predict A3 from the input
variables:

A3a	: IN(A1, A2, A4, A5)	=> OUT(A3)
A3b	: IN(A1, A4, A5)	=> OUT(A3)
A3c	: IN(A4, A5)	=> OUT(A3)

Signal A2 was eliminated from model A3b because it didnt appear to be significant. Likewise signals A1 and A2 were eliminated from model A3c.

ModelThe model was created and trained using the initial factory defaultAnalysissettings for the training parameters. After training the following
model statistics were reported.

A3					
Measured	0.54300 0	0.49827 2	0.00000 0	1.00000 0	496.302 00
	-		-	-	456.893
Predicted	0.56994 0	0.47808 1	0.01810 0	1.11042 1	43
Residual	-	_	-	_	
	0.02694	0.03356	0.40075	0.49968	2.25216
	0	6	4	5	6
R Square			0.995462		

A **Measured and Predicted** graph was generated to view how the model performed as a time series. This graph demonstrates that the model seems to predict A3 very well.

A sensitivity analysis was run to see if any of the variables could be eliminated from the model. The signal A2 is a candidate for elimination.

Sensitivity Analysis of A3						
Variable	Initial	Percent				
Name	Setting	Total				
A4	0.404284	+0.5218				
		3				
A1	0.446008	-0.23331				
A5	0.439438	-0.19154				
A2	0.446089	+0.0533				

Another model (without A2) was created to see if the performance is severely effected. As you can see from the statistics and the **Measured and Predicted** plot the performance actually increased.

So another sensitivity analysis was done and A1 was eliminated. As you can see the model is starting to fall apart but it is still very significant. Further attempts at reducing the number of inputs to one failed.

A3 496.302 Measured 0.54300 0.49827 0.00000 1.00000 00 0 2 0 0 498.075 Predicted 0.49916 0.07293 1.07412 0.53518 06 9 1 9 0 Residual 0.00781 0.03422 0.53984 0.38931 2.34161 1 6 3 7 3 0.995282 R Square 8. Prestated (AS) N-2000

odo Observation

8.4 8.2

Example: NOX Dataset

NOX Detailed Description							
Description	r: The pow star stac that vari poir	File NOX dataset ver boiler. The idard logged p k gas variable no designed ables. Howeven t to variables	Name - NO was captured intent of the process varial es. This exper experiment v er, there may that have a	X.RAW I during the n data capture bles could be riment is reall vas performe be enough in major effect.	ormal operation of a was to see if any of the used to predict the four y a fishing expedition in d on the process nformation in the log to		
Column Names AMBAIR BARKFEED BARKOFP BARKUAIR COALUPL COALUV ILVATEMP 2LVATEMP 3LVATEMP GASBURN GASIGN OILUPLV OILMILV PAIRUPLV PAIRUPLV PAIRUPLV PAIRMILV PAIRLOLV SECUPLV SECUPLV SECOUV STEAMPR STEAMFLO STEAMFLO STEAMFLO STEAMFLO STEAMFLO STEAMFLO STEAMFLO STEAMFLO STEAMFLO STEAMFLO STEAMFLO	Coli Ami Amo Air j Amo Amo Leve Leve Amo Amo Amo Amo Amo Amo Amo Amo Amo Amo	umn Descrip bient air temp bount of bark fe pressure over bressure over bount of coal fe bount of coal fe el 1 flame/gas el 2 flame/gas bount of natura bount of natura bount of natura bount of fuel oil bount of fue	tion erature. d into the bo bark bed. r bark bed. r bark bed. d to upper le d to middle le d to lower level temperature temperature l gas fed into upper level. lower level. ower level. d upper level. d	vel. evel. vel. vel. boiler (main boiler (ignito boiler (ignito boiler (ignito boiler (ignito boiler (ignito boiler (ignito boiler (ignito boiler (ignito) boiler (ignito)	burners). or). Basic Statistics		
Anarysis	data be v lf yc occi don	aset. With this viewed using t ou look closely urring blip. Th e once a day.	much data if he By Row I at the NOX, is was traced	Matrix comm SO2 and OPA to a particula	ommended that the data and in the graph menu. C you will see a re- ar maintenance item		
Variable AMBAIR BARKFEED BARKOFP	N 1340 1340 1340	Mean 104.44056 84.214254 25.602993	Std Dev 10.743963 10.266984 2.868492	Minimum 85.480003 51.849998 -0.030000	Maximum 128.58999 103.26000 26.530001		

BARKUAIR COALUPL COALMILV COALLOLV 1LVATEMP 2LVATEMP 3LVATEMP GASBURN GASIGN OILUPLV OILMILV PAIRUPLV PAIRUPLV PAIRUPLV SECUPLV SECUPLV SECMILV SECLOLV STEAMPR STEAMFLO STEAMTMP NOX	1340 1340 1340 1340 1340 1340 1340 1340	410.853 0.8400 0.2940 0.2780 169.544 137.48 113.243 16.029 7.5114 0.6020 0.9790 26.0274 13.760 9.0252 81.3949 94.7255 100.076 1638.94 489.193 1201.75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.698823 806041 433840 336544 .795764 .120769 .235535 .871236 763247 001349 984428 590400 .276768 088600 .186028 .819705 .736587 .963765 .430005 199598 .824783	27.52 0.00 -0.07 0.01 100.0 85.93 75.52 -0.02 -0.04 -0.06 8.53 3.86 6.14 54.38 70.08 74.12 1519 115.6 1130 32.86	20000 0000 0000 0000 05000 30000 0000 00	477.77999 15.620000 10.690000 14.230000 233.13000 227.55999 238.50999 155.42999 14.110000 21.070000 32.340000 35.990002 33.669998 31.410000 160.39999 172.58999 137.91000 1715.2800 694.27002 1226.1199 240.52000	9 0 0 0 0 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0
02	1340	9.9990	137 2.	54/359	2.93	0000	23.28000	1
502	1340	32.512	619 39	.96/415	14.30	00000	370.7600.	1
OPAC	1340	4.1332	46 1.	442123	2.37	0000	19.900000	J
Model Building	Due rese fror	e to the la erved for n all inpu NOX1	rge amo testing. t variable : IN =>	unt of dat The first r es: (AMBAIR, COALUPL, 2LVATEME OILUPLV, PAIRLOLV STEAMPR, OUT (NOX)	ta in the nodel BARK COAI 2, 3LV OILM 7, SEC STEA	nis datas was con: KFEED, E MILV, C VATEMP, MILV, PF CUPLV, S AMFLO, S	et, 80% o structed to BARKOFP, COALLOLV, GASBURN, AIRUPLV, SECMILV, STEAMTMP)	f it was o predict NOX BARKUAIR, 1LVATEMP, GASIGN, PAIRMILV, SECLOLV,
Model Analysis	The fact the	first mod ory defau following	del (NOX) ult setting model s	1) was cre gs for the statistics v	eated a trainii vere re	and train ng paran eported.	ied using t neters. Aft	the initial ter training
	NO> Mea Pree	(1 - Traini asured dicted	ing matri 93.8384 93 92.6750 19	ix statistic 1 27.53 46 0 26.05 15	s base 62 86	ed on 14 38.1699 98 46.3746 72	6 observa 181.63 00 171.66 12	tions. 109945. 50 4 98462.4 53
	F		1.16347 4	7 9.156 8	50	- 20.9850 2 0.880/2	45.171 71	.4 12157.0 38
	Г	, Square				0.00942	_ /	

The model was tested using the test matrix and the following model statistics were reported.

NOX1 - Test matrix statistics based on 1194 observations.

	91.1099	27.8567	32.8799	240.520	925764.
Measured	33	27	97	02	67
	90.0279	25.1873	50.6704	173.303	756843.
Predicted	41	65	48	37	17
Residual		10.1323	-	70.0591	122478.
	1.08199	22	54.0867	13	08
	2		3		
R Square			0.867701		

The model performance did not collapse on the test matrix indicating that the model is probably OK. The next step is to run a sensitivity analysis on the model to see if any input variables could be removed. The following table was generated using the **Sensitivity Report** command in the Model menu.

Sensitivi	ty Analysis	of NOX
Variable	Initial	Percent
Name	Setting	Total
COALUPL	7.81	+0.1580
		3
COALLOLV	7.12	+0.1500
		3
BARKOFP	13.25	-0.12880
1LVATEMP	166.59	+0.0892
		9
AMBAIR	107.04	-0.07536
3LVATEMP	157.04	+0.0589
		2
COALMILV	5.31	+0.0577
		8
STEAMFLO	404.94	+0.0486
		4
OILMILV	16.14	-0.04636
OILUPLV	10.52	+0.0367
0.20.21		7
21VATEMP	156.75	-0.03403
PAIRLOLV	18.78	+0.0244
		3
STEAMTMP	1178 30	+0.0207
512/01111	11/0.50	8
SECMILV	121.34	-0.01325
GASIGN	7 04	-0.01165
	18 77	-0.01096
SECLOLV	106.02	+0.0098
SECLOLY	100.02	2
SECUPIV	107 40	-0.00617
BARKIJAIR	252.65	+0.00017
B/ (I (ICO/ (II (252.05	7
PAIRLIPLV	22.26	, -0 00480
BARKEED	77 56	±0.00400
	77.50	3
GASBURN	77 71	-0 00207
STEAMPR	1617 61	-0.00160
	TOT1.01	0.00100

After reviewing the previous report, it was decided that variables

that had less then a 2% effect on NOX should be eliminated. The following variables were eliminated: SECMILV, GASIGN ,PAIRMILV, SECLOLV, SECUPLV, BARKUAIR, PAIRUPLV, BARKFEED, GASBURN and STEAMPR. A new model (NOX2) was then created and trained using the paired down input list.

NOX2 - Training matrix statistics based on 146 observations.					
	93.8384	27.5362	38.1699	181.630	109945.
Measured	93	46	98	00	50
	92.2616	26.2547	41.6774	174.910	99950.3
Predicted	39	64	37	64	33
Residual			-	43.5268	12093.7
	1.57685	9.13264	22.1242	02	50
	5	3	2		
R Square			0.890002		

The model was tested using the test matrix and the following model statistics were reported.

IOX2 - Test matrix statistics based on 1194 observations.						
	91.1099	27.8567	32.8799	240.520	925764.	
Measured	33	27	97	02	67	
	89.7466	25.1003	46.3053	178.312	751623.	
Predicted	92	64	05	56	71	
Residual		10.5586	-	65.6222	133002.	
	1.36324	78	51.7345	84	42	
	1		0			
R Square			0.856332			

Example: CLO2 Dataset

CLO2 Detailed Description File Name - CLO2.RAW

Description: The CLO2 dataset was the result of an chemical experiment to find the best operating points for ACID, TEMP, H2O2 and NaClO3 to product ClO2.

Column Column Description

Amount of acid used in the reaction
The temperature of the reaction
Amount of hydrogen peroxide used in the reaction
Amount of sodium chlorate used in the reaction
Amount of chlorine dioxide produced
Amount of chlorine converted relative to total available

Data The basic statistics report follows:

Analysis

Variable	N	Mean	Std Dev	Minimum	Maximum	
ACID	30	12.000000	2.729153	6.000000	18.000000	
TEMP	30	60.000000	9.097177	40.000000	80.000000	
H2O2	30	1.980333	0.991966	0.140000	4.050000	
NACLO3	30	56.000000	20.943273	20.000000	100.00000	
CLO2	30	3.206000	2.199261	0.160000	8.370000	
PROD	30	71.833333	28.118080	3.000000	100.00000	
Model	Bu	uild a model of (CLO2 and PRO)D using the a	other variable	S

Building

Build a model of CLO2 and PROD using the other variables as inputs. Export the models to an optimizer to find the maximum production.

Example: CLOSTAT1 Dataset

CLOSTAT1 Detailed Description File Name - CLOSTAT1.RAW

Description: The CLOSTAT1 dataset was the result of an chemical simulation to find the best operating points for DIL, CONS and RECY. WAT, D0CS, COSW, SOL D1CW and D1CS are process streams resulting from the simulation.

Column Names	Column Description
DIL	Dilution
CONS	Consistancy
RECY	Recycle water
WAT	-
D0CS	
COSW	
SOL	
D1CW	
D1CS	

Data	The basic statistics report follows:
Analysis	

Variable	Ν	Mean	Std Dev	Minimum	Maximum
DIL	15	5.000000	0.590399	4.000000	6.000000
CONS	15	8.794607	3.232301	3.291297	14.284348
RECY	15	0.941179	0.100738	0.778182	1.105573
WAT	15	7019.7693	1613.4971	5327.4257	11238.688
D0CS	15	767.34628	311.13754	270.94604	1285.0131
COSW	15	313.60096	56.263328	211.49833	405.66909
SOL	15	0.080857	0.019873	0.047394	0.118405
D1CW	15	204.52833	4.186309	196.89950	211.28370
D1CS	15	808.47947	18.348460	775.10199	838.51586
Model	Bu	uild a models of	WAT, DOCS,	COSW, SOL, E	D1CW and D1C

ModelBuild a models of WAT, D0CS, COSW, SOL, D1CW and D1CS using
the other variables as inputs. Export the models to an optimizer to
find ???

Example: PEAK4 Dataset

Building

PEAK4 Detailed Description

Description	: Cor and	File Itains the resu l evaluating Z	Name - PEA Ilts of steppin = sin(X) sin(N	K4.RAW g angles X an ()	d Y (11 steps) from 0 to	
Column Names	Col	Column Description The X variable The Y variable The result of the equation				
X Y Z	The The The					
Data Analysis	The	e basic statisti	cs report follo	WS:		
Variable X Y Z	N 121 121 121	Mean 0.500000 0.500000 0.680000	Std Dev 0.317543 0.317543 0.200671	Minimum 0.000000 0.000000 0.200000	Maximum 1.000000 1.000000 1.000000	
Model	Bui	ld a model of 2	Z using X and	Y as inputs.		

Example: CURL Dataset

CURL Detailed Description File Name - CURL RAW

Description	: The ind	The was the result of a designed experiment to find which independent variables have the most effect on paper curl.					
Column Names	Co	lumn Descrip	otion				
JET	Jet	to wire ratio m	neasurement				
MOIST	Мо	isture measure	ed on the pape	er machine			
DD	Dry she	Dryer differential measurement (between top and bottom of the sheet)					
CDPOS	Pos	sition across th	e paper mach	nine (physica	l)		
FOT	Fib	er orientation a	angle (lab)				
SCURL	Sin	nplex curl (lab)	1				
DCURL	Du	plex curl (lab)					
RCURL	Re	el curl (lab)					
RMOIST	Re	el moisture (lal	b)				
Data Analysis	The	e basic statistio	cs report follo	ws:			
Variable	Ν	Mean	Std Dev	Minimum	Maximum		
IET	70	26.001604	17.569578	6.442120	45.548595		

valiable	IN	Mean	JLU DEV	Minimum	Maximum
JET	70	26.001604	17.569578	6.442120	45.548595
MOIST	70	5.591592	0.587862	4.907064	6.282612
DD	70	16.901340	8.196261	7.749969	26.027664
CDPOS	70	16.428571	10.965785	1.000000	32.000000
FOT	70	4.145139	9.372166	-18.19136	20.694777
SCURL	70	-1.858674	21.378735	-55.25967	39.023815
DCURL	70	0.183420	17.469644	-39.00546	26.024122
RCURL	70	-4.502250	11.028441	-25.98776	19.509588
RMOIST	70	6.236317	0.506186	5.269414	6.997371

ModelBuild models of FOT, SCURL, DCURL and RCURL using JET, MOIST,BuildingDD and CDPOS as inputs. Try using RMOIST (lab moisture) in place
of MOIST (on-line measurement).

Example: STR4 Dataset

STR4 Detailed Description File Name - STR4 RAW											
Description	The pape the pape expe proc	The STR4 dataset was captured during the normal operation of a paper machine. The intent of the data capture was to see if any of the standard logged process variables could be used to predict paper strength properties. This experiment is really a fishing expedition in that no designed experiment was performed on the process variables. However, there may be enough information in the log to point to variables that have a major effect.									
Column	Colu	Column Description									
KSOFT KHARD KBROKE KDEINK KGRDW STARSLD SPEED HDBXPH HDBXFREE HDBXCONS SOFTCONS SOFTCONS SOFTCONS SOFTFREE HARDCONS HARDFREE SBSWGT STAF STEARMD STEARCD RAWSTOCK REELMO UBSWGT COUCH REELASH LABMO	Perc Perc Perc Star Pape Hea Hea Hea Soft Soft Harc Sup Sup Sup Sup Sup Sup Sup Sup Sup Sup	Percent softwood pulp used in furnish Percent hardwood pulp used in furnish Percent broke pulp used in furnish Percent deinked pulp used in furnish Percent groundwood pulp used in furnish Starch solids Paper machine speed Head box pH Head box freeness Head box consistancy Softwood consistancy Softwood consistancy Hardwood freeness Hardwood freeness Supered basis weight Supered TAF (strength test) Supered MD tear (strength test) Supered MD tear (strength test) Raw stock basis weight Reel moisture Un-supered basis weight Couch vacuum Reel ash Lab moisture									
Data Analysis	The	basic statistic	s report follow	WS:							
Variable KSOFT KHARD KBROKE	N 1178 1178 1178	Mean 35.300509 11.530560 30.334465	Std Dev 5.127401 14.534154 3.890627	Minimum 0.000000 0.000000 10.00000	Maximum 41.000000 47.000000 40.000000						
KDEINK KGRDW STARSLD SPEED	1178 1178 265 1178	6.057725 16.782683 1.216679 2254.4295	4.218549 14.455638 0.075545 100.00711	0.000000 0.000000 0.900000 1845.000 0	15.000000 34.000000 1.600000 2313.0000						
HDBXPH HDBXFREE	1178 1178	7.184550 144.56536	0.133124 73.165909	6.900000 54.00000	7.400000 330.00000						

				0			
HDBXCONS	1178	0.584888	0.044584	0.500000	0.740000		
SOFTCONS	1176	3.716556	0.206896	2.980000	4.300000		
SOFTFREE	1176	501.39881	34.988070	398.0000	635.00000		
				0			
HARDCON S	491	3.878411	0.268816	3.360000	4.560000		
HARDFREE	491	417.72301	33.024367	351.0000 0	483.00000		
SBSWGT	642	44.566963	7.246427	36.83000 2	71.330002		
STAF	157	35.529618	6.042086	20.40000	54.430000		
STEARMD	340	22.358529	4.784218	14.60000	45.099998		
STEARCD	340	26.862941	6.009229	19.40000	56.099998		
RAWSTOCK	718	30.471086	4.376988	25.95000 1	56.759998		
REELMO	741	3,851309	0.464810	2.280000	5,420000		
UBSWGT	739	45.397253	6.907419	37.09999	70.580002		
			0.007.120	8			
COUCH	240	6.915833	1.587740	4.000000	13.900000		
REELASH	197	27.450254	2.671402	22,50000	34,500000		
_	-			0			
LABMO	228	4.524561	0.654777	2.400000	6.200000		
Model Build a model of STAF and find the variables that most effect it.							

Model Building